Universidad Politécnica de Madrid

Instituto de energía solar

Most cited papers

Updated January 2017

Source: Scopus (Scopus® is a registered trademark of Elsevier B.V.)

 

DOCUMENT

TOTAL CITES

1.   A. Luque, and A. Martí, “Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels”, Physical Review Letters, vol. 78, no. 26, pp. 5014-5017.http://dx.doi.org/10.1103/PhysRevLett.78.5014. ©1997 American Physical Society   1417
         
2.   A. Luque and S. Hegedus, "Handbook of Photovoltaic Science and Engineering - 2nd Edition”, John Wiley & Sons Ed. Chichester, West Sussex (UK), 2011. (ISBN: 978-0-470-72169-8)   1108
         
3.   C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svreek, C. del Cañizo, and I. Tobías, “Modifying the solar spectrum to enhance silicon solar cell efficiency. An overview of available materials”, Solar Energy Materials and Solar Cells, vol. 91, pp. 238-249, 2007.   344
         
4.   A. Martí, E. Antolín, C. R. Stanley, C. D. Farmer, N. López, P. Díaz, E. Cánovas, P. García-Linares, and A. Luque, “Production of photocurrent due to intermediate-to-conduction-band transitions: a demonstration of a key operating principle of the intermediate-band solar cell”, Physical Review Letters, vol. 97, no. 24, pp. 247701, 2006.   327
         
5.   A. Luque, A. Marti, and C. Stanley, "Understanding intermediate-band solar cells", Nature Photonics, vol. 6, pp. 146-152, 2012.   273
         
6.   A. Luque, and A. Martí, “A metallic intermediate band high efficiency solar cell”, Progress in Photovoltaics: Research and Applications, vol. 9, no. 2, pp. 73-86, 2001.   205
         
7.   G. L. Araújo, and A. Martí, “Absolute limiting efficiencies for photovoltaic energy conversion”, Solar Energy Materials and Solar Cells, vol. 33, pp. 213-240, 1994.   181
         
8.   A. Luque, and A. Marti, “The Intermediate Band Solar Cell: Progress toward the realization of an attractive concept”, Advanced Materials, vol. 22, no. 2, pp. 160-174, Jan, 2010   174
         
9.   M. C. Alonso-Garcia, J. M. Ruiz, and F. Chenlo, “Experimental study of mismatch and shading effects in the I-V characteristic of a photovoltaic module”, Solar Energy Materials and Solar Cells, vol. 90, no. 3, pp. 329-340, 2006.   171
         
10.   A. Luque, A. Martí, E. Antolín, and C. Tablero, “Intermediate bands versus levels in non-radiative recombination”, Physica B-Condensed Matter, vol. 382, no. 1-2, pp. 320-327, 2006.   165
         
11.   D. Bouhafs, A. Moussi, A. Chikouche, and J. M. Ruiz, “Design and simulation of antireflection coating systems for optoelectronic devices: Application to silicon solar cells”, Solar Energy Materials and Solar Cells, vol. 52, no. 1- 2, pp. 79-93, 1998.   151
         
12.   A. Luque, A. Martí, N. Lopez, E. Antolin, E. Canovas, C. Stanley, C. Farmer, L. J. Caballero, L. Cuadra, and J. L. Balenzategui, “Experimental analysis of the quasi-Fermi level split in quantum dot intermediate-band solar cells”, Applied Physics Letters, vol. 87, no. 8, pp. 3, Aug, 2005.   147
         
13.   A. Martí, N. López, E. Antolín, E. Cánovas, and A. Luque, "Emitter degradation in quantum dot intermediate band solar cells”, Applied Physics Letters, vol. 90, pp. 233510-1 - 4, 2007.   145
         
14.   A. Luque, A. Martí, C. R. Stanley, N. López, L. Cuadra, D. Zhou, J. L. Pearson, and A. McKee, “General equivalent circuit for intermediate band devices: Potentials, currents and electroluminescence”, Journal of Applied Physics, vol. 96, no. 1, pp. 903-909, 2004.   142
         
15.   A. Martí, N. López, E. Antolín, E. Cánovas, C. R. Stanley, C. D. Farmer, L. Cuadra, and A. Luque, “Novel semiconductor solar cell structures: The quantum dot intermediate band solar cell”, Thin Solid Films, vol. 511, pp. 638-644, 2006.   131
         
16.   I. Rey-Stolle, and M. Vazquez, “Photovoltaic Module Reliability Model Based in Field Degradation Studies”, Progress in Photovoltaic: Research and Applications, vol. 16, no. 5, pp. 419-433, 2008.   119
         
17.   A. Luque, A. Martí, N. López, E. Antolín, E. Cánovas, C. R. Stanley, C. D. Farmer, and P. Díaz, “Operation of the intermediate band solar cell under nonideal space charge region conditions and half filling of the intermediate band”, Journal of Applied Physics, vol. 99, pp. 094503-1-094503-9, 2006.   118
         
18.   A. Martí, L. Cuadra, and A. Luque, “Partial filling of a quantum dot intermediate band for solar cells”, IEEE Transactions on Electron Devices, vol. 48, no. 10, pp. 2394-2399, 2001.   114
         
19.   M. A. Egido, and E. Lorenzo, “Sizing of stand alone PV-systems: A review and a proposed new method”, Solar Energy Materials and Solar Cells, vol. 26, no. 1-2, pp. 51-69, 1992.   108
         
20.   E. Antolin, A. Marti, C. D. Farmer, P. G. Linares, E. Hernandez, A. M. Sanchez, T. Ben, S. I. Molina, C. R. Stanley, and A. Luque, “Reducing carrier escape in the InAs/GaAs quantum dot intermediate band solar cell”, Journal of Applied Physics, vol. 108, no. 6, pp. 7, Sep, 2010.   105
         
21.   N. Martín, and J. M. Ruiz Pérez, “Calculation of the PV modules angular losses under field conditions by means of an analytical model”, Solar Energy Materials and Solar Cells, vol. 70, no. 1, pp. 25-38, 2001.   99
         
22.   M. Castillo, E. Caamaño, E. Matallanas, D. Masa, A. Gutiérrez, F. Monasterio, and J. Jiménez-Leube, "PV self-consumption optimization with storage and Active DSM for the residential sector", Solar Energy, vol. 85, pp. 2338-2348, 2011.   94
         
23.   A. Martí, J. L. Balenzategui, and R. M. Fernández Reyna, “Photon recycling and Shockley's diode equation”, Journal of Applied Physics, vol. 82, no. 8, pp. 4067-4075, 1997.   93
         
24.   E. Matallanas, M. Castillo, A. Gutiérrez, F. Monasterio-Huelin, E. Caamaño, D. Masa, and J. Jiménez-Leube, "Neural network controller for Active Demand-Side Management with PV energy in the residential sector", Applied Energy, vol. 91, pp. 90-97, 2012.   90
         
25.   C. Algora, E. Ortíz, I. Rey-Stolle, V. Díaz, R. Peña, V. M. Andreev, V. P. Khvostikov, and V. D. Rumyantsev, "A GaAs solar cell with an efficiency of 26.2% at 1000 suns and 25.0% at 2000 suns", IEEE Transactions on Electron Devices, vol. 48, pp. 840-844, 2001.   83
         
26.   P. Wahnon, and C. Tablero, “Ab-initio electronic structure calculations for metallic intermediate band formation in photovoltaic materials”, Physical Review B: Condensed Matter and Materials Physics, vol. 65, Nº 16, no. 165115, pp. 1-10, 15 April, 2002.   82
         
27.   L. Cuadra, A. Martí, and A. Luque, “Influence of the overlap between the absorption coefficients on the efficiency of the intermediate band solar cell”, IEEE Transactions on Electron Devices, vol. 51, no. 6, pp. 1002-1007, 2004.   81
         
28.   A. Luque, G. Sala, and J. C. Arboiro, "Electric and thermal model for non-uniformly illuminated concentration cells", Solar Energy Materials and Solar Cells, vol. 51, pp. 269-290, 1998.   81
         
29.   M. C. Alonso-Garcia, J. M. Ruiz, and W. Herrmann, “Computer simulation of shading effects in photovoltaic arrays”, Renewable Energy, vol. 31, no. 12, pp. 1986-1993, 2006.   76
         
30.   M. Castillo, A. Gutierrez, F. Monasterio-Huelin, E. Caamaño, D. Masa, and J. Jiménez-Leube, "A semi-distributed electric demand-side management system with PV generation for self-consumption enhancement", Energy Conversion and Management, vol. 52, pp. 2659-2666, 2011.   73
         
31.   E. Antolín, A. Martí, J. Olea, D. Pastor, G. González-Díaz, I. Mártil, and A. Luque, “Lifetime recovery in ultrahighly titanium-doped silicon for the implementation of an intermediate band material”, Applied Physics Letters, vol. 94, no. 4, pp. 042115-1-3, 2009.   73
         
32.   A. Martí, L. Cuadra, and A. Luque, “Quasi-drift diffusion model for the quantum dot intermediate band solar cell”, IEEE Transactions on Electron Devices, vol. 49, no. 9, pp. 1632-1639, 2002.   73
         
33.   M. García, J. M. Maruri, L. Marroyo, E. Lorenzo, and M. Pérez, “Partial shadowing, MPPT performance and inverter configurations: Observations at tracking PV plants”, Progress in Photovoltaics: Research and Applications, vol. 16, no. 6, pp. 529-536, 2008.   71
         
34.   A. Luque, A. Martí, and L. Cuadra, "Thermodynamic consistency of sub-bandgap absorbing solar cell proposals", IEEE Transactions on Electron Devices, vol. 48, pp. 2118-2124, 2001.   68
         
35.   J. C. Miñano, J. C. Gonzalez, and P. Benítez, "High-gain, compact, nonimaging concentrator: RXI", Applied Optics, vol. 34, pp. 7850-7856, 1995.   68
         
36.   M. Haouari-Merbah, M. Belhamel, I. Tobías, and J. M. Ruiz Pérez, "Extraction and analysis of solar cell parameters from the illuminated current-voltage curve", Solar Energy Materials and Solar Cells, vol. 87, pp. 225-233, 2005.   67
         
37.   A. Martí, E. Antolín, E. Cánovas, N. López, P. García-Linares, A. Luque, C. R. Stanley, and C. D. Farmer, “Elements of the design and analysis band solar of quantum-dot intermediate cells”, Thin Solid Films, vol. 516, no. 20, pp. 6716-6722, 2008.   66
         
38.   J. F. Geisz, M. A. Steiner, I. Garcia, S. R. Kurtz, and D. J. Friedman, "Enhanced external radiative efficiency for 20.8% efficient single-junction GaInP solar cells", Applied Physics Letters, vol. 103, p. 5, Jul 2013.   64
         
39.   A. Martí, D. Fuertes Marrón, and A. Luque, “Evaluation of the efficiency potential of intermediate band solar cells based on thin-film chalcopyrite materials”, Journal of Applied Physics, vol. 103, no. 7, pp. 073706, 2008.   61
         
40.   B. Galiana, C. Algora, I. Rey-Stolle, and I. García, “A 3-D model for concentrator solar cells based on distributed circuit units”, IEEE Transactions on Electron Devices, vol. 52, no. 12, pp. 2552-2558, 2005.   61
         
41.   C. del Cañizo, G. del Coso, and W. C. Sinke, “Crystalline silicon solar module technology: Towards the 1€ per watt-peak goal”, Progress in Photovoltaic: Research and Applications, vol. 17, pp. 199-209, 2009.   59
         
42.   E. Menendez-Proupin, P. Palacios, P. Wahnon, and J. C. Conesa, "Self-consistent relativistic band structure of the CH 3NH 3PbI 3 perovskite", Physical Review B (Condensed Matter and Materials Physics), vol. 90, pp. 045207 (7 pp.)-045207 (7 pp.), 15 2014.   59
         
43.   R. Lucena, I. Aguilera, P. Palacios, P. Wahnón, and J. C. Conesa, "Synthesis and spectral properties of nanocrystalline V-substituted In2S3 a novel material for more efficient use of solar radiation", Chemistry of Materials, vol. 20, pp. 5125 - 5127, 2008.   59
         
44.   L. Cuadra, A. Martí, and A. Luque, "Present status of intermediate band solar cell research", Thin Solid Films, vol. 451, pp. 593-599, 2004.   57
         
45.   A. Martí, L. Cuadra, and A. Luque, "Design constraints of the quantum-dot intermediate band solar cell", Physica E-Low-Dimensional Systems & Nanostructures, vol. 14, pp. 150-157, 2002.   57
         
46.   J. del Alamo, J. Eguren, and A. Luque, "Operating limits of Al-alloyed high-low junctions for BSF solar cells", Solid State Electronics, vol. 24, pp. 415-420, 1981.   57
         
47.   P. Palacios, K. Sánchez, J. C. Conesa, J. J. Fernández, and P. Wahnón, “Theoretical modeling of intermediate band solar cell materials based on metal-doped chalcopyrite compounds”, Thin Solid Films, vol. 515, pp. 6280-6284, 2007.   57
         
48.   C. Tablero, “Electronic and magnetic properties of ZnS doped with Cr”, Physical Review B, vol. 74, no. 19, 2006.   56
         
49.   P. Palacios, I. Aguilera, K. Sánchez, J. C. Conesa, and P. Wahnón, “Transition metal substituted indium thiospinels as novel intermediate band materials: Prediction and understanding of their electronic properties”, Physical Review Letters, vol. 101, no. 046403, pp. 046403/1 - 046403/4, 2008.   56
         
50.   P. García-Linares, A. Martí, E. Antolín, C. D. Farmer, I. Ramiro, C. R. Stanley, and A. Luque, "Voltage recovery in intermediate band solar cells", Solar Energy Materials and Solar Cells, vol. 98, pp. 240-244, 2012.   51
         

hiperEnlace volverBack